Improvements to Robotics-Inspired Conformational Sampling in Rosetta
نویسندگان
چکیده
To accurately predict protein conformations in atomic detail, a computational method must be capable of sampling models sufficiently close to the native structure. All-atom sampling is difficult because of the vast number of possible conformations and extremely rugged energy landscapes. Here, we test three sampling strategies to address these difficulties: conformational diversification, intensification of torsion and omega-angle sampling and parameter annealing. We evaluate these strategies in the context of the robotics-based kinematic closure (KIC) method for local conformational sampling in Rosetta on an established benchmark set of 45 12-residue protein segments without regular secondary structure. We quantify performance as the fraction of sub-Angstrom models generated. While improvements with individual strategies are only modest, the combination of intensification and annealing strategies into a new "next-generation KIC" method yields a four-fold increase over standard KIC in the median percentage of sub-Angstrom models across the dataset. Such improvements enable progress on more difficult problems, as demonstrated on longer segments, several of which could not be accurately remodeled with previous methods. Given its improved sampling capability, next-generation KIC should allow advances in other applications such as local conformational remodeling of multiple segments simultaneously, flexible backbone sequence design, and development of more accurate energy functions.
منابع مشابه
Flexible backbone sampling methods to model and design protein alternative conformations.
Sampling alternative conformations is key to understanding how proteins work and engineering them for new functions. However, accurately characterizing and modeling protein conformational ensembles remain experimentally and computationally challenging. These challenges must be met before protein conformational heterogeneity can be exploited in protein engineering and design. Here, as a stepping...
متن کاملMaintaining and Enhancing Diversity of Sampled Protein Conformations in Robotics-Inspired Methods
The ability to efficiently sample structurally diverse protein conformations allows one to gain a high-level view of a protein's energy landscape. Algorithms from robot motion planning have been used for conformational sampling, and several of these algorithms promote diversity by keeping track of "coverage" in conformational space based on the local sampling density. However, large proteins pr...
متن کاملIterative Molecular Dynamics—Rosetta Protein Structure Refinement Protocol to Improve Model Quality
Rosetta is one of the prime tools for high resolution protein structure refinement. While its scoring function can distinguish native-like from non-native-like conformations in many cases, the method is limited by conformational sampling for larger proteins, that is, leaving a local energy minimum in which the search algorithm may get stuck. Here, we test the hypothesis that iteration of Rosett...
متن کاملRosetta in CAPRI rounds 13–19
Modeling the conformational changes that occur on binding of macromolecules is an unsolved challenge. In previous rounds of the Critical Assessment of PRediction of Interactions (CAPRI), it was demonstrated that the Rosetta approach to macromolecular modeling could capture side chain conformational changes on binding with high accuracy. In rounds 13-19 we tested the ability of various backbone ...
متن کاملGuiding the Search for Native-like Protein Conformations with an Ab-initio Tree-based Exploration
In this paper we propose a robotics-inspired method to enhance sampling of native-like conformations when employing only aminoacid sequence information for a protein at hand. Computing such conformations, essential to associating structural and functional information with gene sequences, is challenging due to the highdimensionality and the rugged energy surface of the protein conformational spa...
متن کامل